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Abstract

Maximum heat transfer per cross-sectional area of a tube with smooth wall in turbulent flow at constant wall temperature is deter-
mined for a given pressure loss. The dimensionless tube length is determined dependent on the pressure Reynolds number, Prandtl num-
ber and inlet local pressure loss coefficient. Limiting cases for short and long tubes are separately investigated. Semi-empirical equations
are derived for both optimum dimensionless tube length and dimensionless maximum heat flow per cross-sectional area using numeri-
cally obtained values with a maximum deviation of ±6.6% and with a RMSE of 3.5%. The results can also be applied to the channels
with non-circular cross-sectional area.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat exchangers should be constructed as compact as
possible. Therefore, they should be designed so that opti-
mum heat transfer occurs. Optimum conditions can occur
both for natural and forced convective heat transfer. Dif-
ferent optimum heat transfer conditions are described by
Middleman [1].

In many applications heat is transferred by natural con-
vection. Optimum spacing in vertical parallel plates for
natural convection is presented by Bar-Cohen and Rohse-
now [2] for isothermal symmetric and asymmetric heating
and isoflux heating boundary conditions. This problem is
investigated numerically by Morrone et al. [3] considering
second derivatives in flow direction. Optimum spacing
between horizontal cylinders is investigated analytically
and numerically by Bejan et al. [4]. Optimum distance
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between vertical fins by natural convection is determined
analytically by Vollaro et al. [5]. Optimum conditions for
vertical ducts of arbitrary cross-sectional area are obtained
using analytical and experimental results by Yılmaz and
Oğulata [6].

Forced convection is the most commonly encountered
mode of heat transfer. Bejan and Sciubba [7] and Campo
[8] determined optimal plate channel spacing for forced
convection. Fowler et al. [9] investigated both numerically
and experimentally optimal placing of staggered plates in
forced convection. Matos et al. [10] calculated numerically
heat transfer around staggered circular and elliptical tubes
with constant surface temperature in forced convection.
They determined optimal spacing between the circular or
elliptical surfaces as a function of Reynolds number.
Yılmaz et al. [11] presented optimum dimensions of ducts
for laminar flow at constant wall temperature.

In this work, optimum tube length for turbulent flow
which allows highest heat transfer per cross-sectional area
of the tube with smooth wall is determined. This problem
has not been investigated according to the best knowledge
of the author.
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Nomenclature

A cross-sectional area
cp specific heat
d diameter
h heat transfer coefficient
k thermal conductivity
L length of the duct
L* dimensionless length, Eq. (19)
Nu Nusselt number, Eq. (27)
Pr Prandtl number
_q heat flux, Eq. (2)
_q� dimensionless heat flux, Eq. (9)
_Q heat flow
p pressure
Re Reynolds number, Eq. (15)
Rep pressure Reynolds number, Eq. (25)
RMSE root mean square error
T temperature
u velocity
up pressure velocity, Eq. (6)
_V volume flow rate
x axial coordinate
z entrance number, Eq. (28)

Greek symbols

Dp pressure drop
DT temperature difference, Eq. (5)
e porosity
h dimensionless temperature, Eq. (7)
k pressure loss coefficient
m kinematic viscosity
q density

Superscripts and subscripts
* dimensionless
1 for e = 1
e for e 6¼ 1
e exit
f frictional
i inlet, incremental
l local
m mean
o optimum
p pressure
w wall
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2. Derivation of the equations

Heat transfer in a tube is formulated as

_Q ¼ qcp
_V ðT i � T eÞ ð1Þ

where q; cp; _V ; T i and Te are density, specific heat, volume
flow rate, mean inlet and mean exit temperatures of the
fluid, respectively. Heat transfer per cross-sectional area
is given with the following equation:

_q ¼
_Q
A
¼ qcpumðT i � T eÞ ð2Þ

where A and um are cross-sectional area and mean fluid
velocity, respectively. They are defined as

A ¼ p
4

d2 ð3Þ

um ¼
_V
A

ð4Þ

Using the definitions

DT ¼ T i � T w ð5Þ
up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dp=q

p
ð6Þ

h ¼ T e � T w

DT
ð7Þ

u� ¼ um

up

ð8Þ

q� ¼ _q
qcpupDT

ð9Þ
one obtains from Eq. (2)

q� ¼ u�ð1� hÞ ð10Þ
Here, Tw and Dp are constant wall temperature and total
pressure loss in the tube, respectively. Total pressure loss
consists of frictional pressure loss Dpf for developed flow,
incremental pressure loss Dpi and local pressure loss Dpl.
Local pressure loss can be calculated by

Dpl ¼ kl

qu2
m

2
ð11Þ

where kl is determined from the porosity e in heat exchang-
ers [11]:

kl ¼
ð3� eÞð1� eÞ2

2� e
ð12Þ

e can be envisaged as the ratio of fluid velocities before
entering the tube to that in the tube. Frictional pressure
loss at developed flow conditions can be calculated from

Dpf ¼ kf

L
d

qu2
m

2
ð13Þ

where L is the length of the tube. Frictional pressure loss
coefficient kf should be calculated with the equation of Pra-
ndtl [12],

1

kf

¼ 2:0 log Re
ffiffiffiffi
kf

p� �
� 0:80 ð14Þ

where Reynolds number Re is defined as

Re ¼ umd
m

ð15Þ
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Here m is kinematic viscosity of the fluid. Incremental pres-
sure loss can be calculated as

Dpi ¼ ki

qu2
m

2
ð16Þ

ki values are given by Bhatti and Shah [12]. Using these val-
ues, the following equation is derived:

ki ¼
1

14:28þ 2
x�þ15x�5

ð17Þ

where

x� ¼ L�

Re1=4
ð18Þ

Here L* is defined as

L� ¼ L
d

ð19Þ

Let us define dimensionless total pressure loss as,

Dp� ¼ Dp
qu2

m=2
ð20Þ

where total pressure loss is given by the following formula:

Dp ¼ Dpf þ Dpi þ Dpl ð21Þ

One can rewrite Eq. (20) as

Dp� ¼ kf

L
d
þ ki þ kl ð22Þ

Introducing Eqs. (6), (8) and (19) in Eq. (22), it follows:

u� ¼ 1

ðkf L� þ ki þ klÞ1=2
ð23Þ

Reynolds number should be calculated from

Re ¼ Repu� ð24Þ

where pressure Reynolds number Rep is defined as follows:

Rep ¼
upd
m

ð25Þ

Rep can also be considered as a dimensionless tube diame-
ter. For given values of Rep, L* and kl, u* is determined
from Eq. (23) iteratively.

Dimensionless temperature h in Eq. (10) can be calcu-
lated from

h ¼ expð�4Nu zÞ ð26Þ

where Nu and z are, respectively, Nusselt number and en-
trance number and they are defined as follows:

Nu ¼ hd
k

ð27Þ

z ¼ L�

RePr
ð28Þ

For Nusselt number, one can use the equation proposed by
Gnielinski [13]
Nu ¼
kf

8
ðRe� 1000ÞPr

1:0þ 12:7ðkf=8Þ1=2ðPr2=3 � 1Þ
ð1þ L��2=3Þ ð29Þ

For kf in this equation, the following equation given by Fil-
onenko [12] should be used

kf ¼
1

ð1:82 log Re� 1:64Þ2
ð30Þ

It is possible to calculate q* in Eq. (10) with the above
equations. This equation is valid for Pr P 0.5, 2300 6
Re 6 106 and L* P 1. Gnielinski equation is preferred be-
cause it has a very wide range of Re and Pr numbers.

3. Equations for long and short tubes

3.1. Long tubes

Local and incremental pressure losses can be neglected
for long tubes. In this case, the following equation can be
obtained from Eq. (23):

u� ¼ 1ffiffiffiffiffiffiffiffiffi
kfL�
p ð31Þ

One can use the equation of Blasius [12] for Reynolds num-
ber between 104 and 105:

kf ¼
0:3164

Re1=4
ð32Þ

Substituting Eqs. (24) and (32) into Eq. (31), the following
equation is obtained:

u� ¼ 1:93Re1=7
p L��4=7 ð33Þ

For long tubes, one can assume h ? 0. Therefore, the equa-
tion below is yielded from Eqs. (10) and (33):

L� ! 1 : q� ¼ 1:93Re1=7
p L��4=7 ð34Þ
3.2. Short tubes

3.2.1. Low Prandtl numbers

For short tubes, one can assume h ? 1. In this case, Eq.
(35) is obtained from Eq. (26):

L� ! 0 : 1� h ¼ 4Nu z ð35Þ
For Reynolds number between 104 and 105 and for low
Prandtl numbers, one can use the equation of Colburn
[12] for Nusselt number with the dependence of L* in Gni-
elinski equation (Eq. (29))

Nu ¼ 0:023Re0:8Pr1=3ð1þ L��2=3Þ ð36Þ
Substituting Eqs. (24) and (36) into Eq. (35) yields:

1� h ¼ 0:092Re�0:8
p u��0:2 L�

Pr2=3
ð1þ L��2=3Þ ð37Þ

Using this equation, one obtains from Eq. (10)

q� ¼ 0:092Re�0:2
p u�0:8

L�

Pr2=3
ð1þ L��2=3Þ ð38Þ



Table 1
Comparison of numerically calculated L�o;1 values with L�o;1 values obtained
from Eq. (45) for various Pr and Rep numbers (e = 1)

Rep L�o;1 ðnumericalÞ L�o;1 (Eq. (45)) Deviation %

e = 1.0
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Eq. (33) can be used for short tubes in case of kl = 0 also.
Substituting Eq. (33) into Eq. (38) yields

L� ! 0 : q� ¼ 0:1557
Re�0:0857

p

Pr2=3
L�0:543ð1þ L��2=3Þ ð39Þ

For short tubes and finite local pressure loss coefficient, it
follows from Eq. (23):

u� ¼ 1

k1=2
l

ð40Þ

Substituting Eq. (40) into Eq. (38) yields:

L� ! 0 : q� ¼ 0:092k�0:4
l

Re�0:2
p

Pr2=3
L�ð1þ L��2=3Þ ð41Þ
Pr = 0.7
4000 40 41.23 2.993
10,000 59.5 57.71 �3.104
40,000 87.6 86.45 �1.328
100,000 110 104.9 �4.845
400,000 149 140.0 �6.457
1,000,000 178.5 169.5 �5.324

Pr = 3
10,000 115.1 119.5 3.719
40,000 161.4 164.2 1.698
100,000 194 195.9 0.982
3.2.2. High Prandtl numbers

The following equation can be used for high Prandtl
numbers which is a limiting formulation of Gnielinski
equation if Eq. (32) is used for kf:

Nu ¼ 0:01566Re0:875Pr1=3ð1þ L��2=3Þ ð42Þ

A very similar equation for high Pr numbers is proposed by
Aravinth [14]. If Eq. (42) is used instead of Eq. (36), the
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Fig. 1. Variation of dimensionless velocity u* with dimensionless tube
length L* for Rep = 100,000 and for different e. a: e = 1; b: e = 0.5; c: e = 0;
d: (Eq. (40)), e = 0.5; e: (Eq. (40)), e = 0; and f: (Eq. (33)).
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Fig. 2. Variation of dimensionless heat flux q* with dimensionless tube
length L* for e = 0.5, Pr = 0.7 and Rep = 100,000 (curve a). b: Eq. (34); c:
Eq. (41).
equations below can be derived instead of Eqs. (39) and
(41), respectively,

L� ! 0 : q� ¼ 0:1114L�0:5Pr�2=3ð1þ L��2=3Þ ð43Þ
L� ! 0 : q� ¼ 0:06264k�7=16

l Re�1=8
p Pr�2=3ð1þ L��2=3ÞL� ð44Þ

One can see from the above equations that there are four
different equations for short dimensionless tube length L*.
400,000 248.3 256.6 3.242
1,000,000 288.3 307.9 6.370

Pr = 7
40,000 250 251.8 0.732
100,000 294.5 295.8 0.445
400,000 368.5 379.6 2.920
1,000,000 421 450.1 6.464

Pr = 30
40,000 573.5 576.5 0.522
100,000 667 663.7 �0.492
400,000 813 824.4 1.385
1,000,000 916 954.9 4.074

Pr = 70
40,000 946 962.0 1.662
100,000 1105 1102.3 �0.247
400,000 1341 1356.7 1.158
1,000,000 1500 1559.1 3.793
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Fig. 3. Variation of optimum dimensionless tube length L�o;1ðe ¼ 1Þ with
Rep for different Pr numbers.



Table 2
Comparison of numerically calculated L�o;e values with L�o;e values obtained
from Eq. (46) for various Pr and Rep numbers at different e’s

Rep L�o;e ðnumericalÞ L�o;e (Eq. (46)) Deviation %
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4. Results

In Fig. 1, dimensionless velocity u* is shown as a func-
tion of L* for different e values with a given Rep value. u*

decreases with increasing L* because of the increase in fric-
tional pressure loss. Without any local pressure loss (e = 1),
u* increases steadily with decreasing L* values.
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Fig. 4. Variation of optimum dimensionless tube length L�o;1ðe ¼ 1Þ with
Pr for different Rep numbers.
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Fig. 5. Variation of L�o;e=L�o;1 with kl for different Pr numbers
(Rep = 100,000).
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Fig. 6. Variation of L�o;e=L�o;1 with kl for different Rep numbers (Pr = 7).
Curves a, b and c are valid for e = 1, e = 0.5 and e = 0,
respectively. Curves d and e are limiting curves for L* ? 0
e = 0
Pr = 0.7
10,000 85.5 80.98 �5.584
40,000 119 121.3 1.906
100,000 149 147.2 �1.207
400,000 203 196.4 �3.361
1,000,000 243.5 237.8 �2.390

Pr = 3
40,000 207 210.9 1.862
100,000 247 251.7 1.866
400,000 318 329.7 3.540
1,000,000 370.5 395.6 6.337

Pr = 7
40,000 303.5 306.048 0.8326
100,000 356.5 359.4864 0.8307
400,000 448 461.2846 2.880
1,000,000 515 546.9702 5.845

Pr = 30
40,000 638 636.5 �0.2392
100,000 739.5 732.8 �0.9180
400,000 906 910.2 0.4576
1,000,000 1026 1054.2 2.678

Pr = 70
40,000 1014.5 1023.7 0.8968
100,000 1180.5 1173.0 �0.6416
400,000 1437 1443.7 0.4657
1,000,000 1615 1659.1 2.660

e = 0.50
Pr = 0.7
10,000 70.1 66.07 �6.107
40,000 100.7 98.97 �1.747
100,000 125.9 120.11 �4.821
400,000 170.9 160.2 �6.659
1,000,000 204.9 194.0 �5.608

Pr = 3
10,000 130 131.8 1.341
40,000 178.5 181.0 1.367
100,000 213.5 216.0 1.136
400,000 274.5 282.9 2.953
1,000,000 319 339.4 6.009

Pr = 7
40,000 268.8 271.3 0.9246
100,000 316 318.7 0.8413
400,000 396.5 408.9 3.038
1,000,000 454 484.9 6.369

Pr = 30
40,000 594 598.0 0.6766
100,000 689 688.5 �0.0686
400,000 843 855.2 1.428
1,000,000 951 990.6 3.995

Pr = 70
40,000 966.5 984.1 1.792
100,000 1127.5 1127.7 0.0148
400,000 1370 1388.0 1.294
1,000,000 1538 1595.0 3.577
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Fig. 8. Variation of optimum dimensionless heat flux q�o;1ðe ¼ 1Þ with Pr

for different Rep numbers.

Table 3
Comparison of numerically calculated q�o;1 values with q�o;1 values obtained
from Eq. (47) for various Pr and Rep numbers (e = 1)

Rep q�o;1 ðnumericalÞ q�o;1 (Eq. (47)) Deviation %

e = 1.0
Pr = 0.7
4000 0.4170 0.4389 4.991
10,000 0.4724 0.4577 �3.215
40,000 0.4855 0.4758 �2.031
100,000 0.4838 0.4820 �0.3752
400,000 0.4791 0.4863 1.483
1,000,000 0.4763 0.4875 2.306

Pr = 3
10,000 0.2905 0.2926 0.6963
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and they are calculated according to Eq. (40) for e = 0.5
and e = 0, respectively. Curve f is a limiting curve for
L* ?1 and it is calculated according to Eq. (33).

In Fig. 2, q* is illustrated dependent on L* as curve a.
One can see clearly from this figure that, q* has a maximum
value at a certain dimensionless length L*. Optimum
dimensionless heat flux and tube length are respectively
designated as q�o;e and L�o;e for e = 0.5. Limiting curve b is
calculated according to Eq. (34) for L* ?1. Limiting
curve c for L* ? 0 is calculated using Eq. (41) for e = 0.5.

The values for L�o are given in Table 1 for different Pr

and Rep values for e ¼ 1ðL�o;1Þ. L�o;1 values are presented in
Figs. 3 and 4 as a function of Rep and Pr numbers, respec-
tively. In these figures, some points for low Rep and high Pr
numbers are not calculated because laminar flow prevails
in these cases. Dependency of L�o;1 on Rep is slightly stron-
ger at lower Rep numbers as can be seen from Fig. 3. In
contrast, dependency of L�o;1 on Pr number is slightly stron-
ger at high values of Pr number as demonstrated in Fig. 4.

The following equation is derived from the numerically
obtained values of L�o;1:

L�o;1 ¼ 14:73Re0:145
p Pr0:62 1þ

0:174Re1=3
p Pr�1:15

ð1þ 5:81010Re�8=3
p Þ

 !0:2

ð45Þ

The values calculated using this equation is given in Table
1, also. This equation describes the real optimum values
with ±6.5% maximum error and 3.4% RMSE which can
be considered as a good approximation.

Eq. (45) is valid for e = 1 (kl = 0). For other e values,
one designates L�o as L�o;e. The values for the ratio L�o;e=L�o;1
are given in Figs. 5 and 6 as a function of kl for different
values of the parameters Pr and Rep, respectively. The
influence of kl on the ratio L�o;e=L�o;1 can be neglected at high
values of Pr number as demonstrated in Fig. 5. As can be
seen from Fig. 6, effect of Rep on L�o;e=L�o;1 is negligible.
Therefore, L�o;e can be described with the following
equation:
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Fig. 7. Variation of optimum dimensionless heat flux q�o;1ðe ¼ 1Þ with Rep

for different Pr numbers.
L�o;e ¼ L�o;1 1þ 0:27Pr�0:22k0:8

ð1þ 0:02Pr2Þ0:18

" #
ð46Þ

In Table 2, values of L�o;e calculated numerically and deter-
mined according to Eq. (46) are given for different Rep, Pr

and e. As can be seen from the table, Eq. (46) describes the
real optimum values with ±6.6% maximum error with a
RMSE of 3.5.
40,000 0.3327 0.3204 �3.829
100,000 0.3449 0.3361 �2.627
400,000 0.3562 0.3525 �1.069
1,000,000 0.3619 0.3585 �0.9560

Pr = 7
40,000 0.2545 0.2434 �4.579
100,000 0.269 0.2594 �3.723
400,000 0.2841 0.281 �1.106
1,000,000 0.2919 0.2918 �0.040

Pr = 30
40,000 0.1526 0.1475 �3.469
100,000 0.1667 0.1586 �5.118
400,000 0.181 0.1763 �2.627
1,000,000 0.1888 0.1884 �0.2211

Pr = 70
40,000 0.1109 0.1098 �1.063
100,000 0.1238 0.1181 �4.837
400,000 0.1363 0.1317 �3.441
1,000,000 0.1429 0.1414 �0.9973



Table 4
Comparison of numerically calculated q�o;e values with q�o;e values obtained
from Eq. (48) for various Pr and Rep numbers at different e’s

Rep q�o;e ðnumericalÞ q�o;e (Eq. (48)) Deviation %

e = 0
Pr = 0.7
10,000 0.3726 0.3666 �1.647
40,000 0.3883 0.3811 �1.906
100,000 0.3886 0.3860 �0.651
400,000 0.3863 0.3895 0.8133
1,000,000 0.3848 0.3905 1.453

Pr = 3
40,000 0.2905 0.2797 �3.863
100,000 0.3001 0.2933 �2.313
400,000 0.3087 0.3076 �0.3411
1,000,000 0.3128 0.3129 0.0373

Pr = 7
40,000 0.2320 0.2212 �4.860
100,000 0.2446 0.2357 �3.763
400,000 0.2566 0.2554 �0.4670
1,000,000 0.2627 0.2652 0.9527

Pr = 30
40,000 0.1463 0.1415 �3.462
100,000 0.1595 0.1520 �4.925
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Optimum dimensionless heat flux q�o for e ¼ 1ðq�o;1Þ is
shown in Figs. 7 and 8 as a function of Rep and Pr num-
bers, respectively. Similar to Figs. 3 and 4, some points
are not calculated due to the transition to laminar flow.
One can see from these figures that the dependency of
q�o;1 on Rep is very weak compared to the dependency on
Pr number. The following equation is derived for q�o;1:

q�o;1 ¼
0:455

Pr0:2ð1þ 2500Pr1:5Re�0:8
p Þ0:1

ð47Þ

The values calculated using this equation is compared in
Table 3 with the numerically obtained values. Eq. (47) de-
scribes real values with a maximum error of ±5% and
RMSE of 2.9%.

q�o values for e 6¼ 1 is designated as q�o;e. In Figs. 9 and 10,
the ratio q�o;1=q�o;e is given as a function of kl for different Pr
and Rep values, respectively. With increasing Pr number,
the influence of local loss coefficient kl decreases as demon-
strated in Fig. 9. As can be seen from Fig 10, the depen-
dency of q�o;1=q�o;e on Rep number can be neglected. The
following equation is derived for q�o;e:

q�o;e ¼
q�o;1

1þ 0:155Pr�0:34k0:88
l

ð1þ0:0385Pr1:48Þ0:25

ð48Þ
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Fig. 10. Variation of q�o;1=q�o;e with kl for different Rep numbers (Pr = 7).
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Fig. 9. Variation of q�o;1=q�o;e with kl for different Pr numbers
(Rep = 100,000).
The values calculated according to this equation is compared
with the real values determined numerically in Table 4.
400,000 0.1724 0.1691 �2.003
1,000,000 0.1794 0.1806 0.6987

Pr = 70
40,000 0.1081 0.1072 �0.9055
100,000 0.1206 0.1153 �4.598
400,000 0.1324 0.1286 �2.912
1,000,000 0.1385 0.1381 �0.2699

e = 0.50
Pr = 0.7
10,000 0.4330 0.4236 �2.219
40,000 0.4478 0.4403 �1.685
100,000 0.4470 0.4461 �0.2122
400,000 0.4435 0.4501 1.469
1,000,000 0.4412 0.4512 2.211

Pr = 3
10,000 0.2765 0.2794 1.044
40,000 0.3181 0.306 �3.957
100,000 0.3291 0.3209 �2.562
400,000 0.3394 0.3365 �0.8504
1,000,000 0.3445 0.3423 �0.6373

Pr = 7
40,000 0.2471 0.2357 �4.815
100,000 0.2609 0.2512 �3.843
400,000 0.2749 0.2722 �1.016
1,000,000 0.2821 0.2826 0.1756

Pr = 30
40,000 0.1507 0.1455 �3.598
100,000 0.1645 0.1564 �5.195
400,000 0.1784 0.1739 �2.561
1,000,000 0.1859 0.1858 �0.0509

Pr = 70
40,000 0.1101 0.1089 �1.103
100,000 0.1228 0.1172 �4.857
400,000 0.1351 0.1307 �3.373
1,000,000 0.1416 0.1403 �0.8704
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Eq. (47) describes real numerically obtained values with a
maximum deviation of ±5.1% and RMSE of 2.4%.

L�o and q�o values can be determined from Eqs. (45)–(48).
Reynolds number should be calculated using Eq. (24) to see
whether the flow is turbulent or not. u* values in this equa-
tion can be approximately calculated from the equation
below:

u� ¼ 1

ðkl þ 0:2685L�8=7Re�2=7
p Þ1=2

ð49Þ

Using this approximate value, u* can be exactly determined
from Eq. (23) iteratively.

5. Conclusions

It is shown that a certain tube length to diameter ratio
(L*) in turbulent tube flow exists which results in maximum
heat transfer per tube cross-sectional area. This value is
dependent on pressure Reynolds number Rep, Prandtl
number Pr and local pressure loss coefficient kl.

Optimum value of L* increases with Pr and Rep num-
bers. Local pressure loss coefficient of the tube kl has an
influence on optimum value of L* only at low Pr numbers.
For Pr values higher than 30, the influence of kl can be
neglected.

Maximum heat transfer per cross-sectional area
increases with Rep and decreases with Pr number. Maxi-
mum heat transfer per cross-sectional area decreases with
local pressure loss coefficient; however, this can be
neglected for Pr > 30.
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[11] A. Yılmaz, O. Büyükalaca, T. Yılmaz, Optimum shape and dimen-
sions of ducts for convective heat transfer in laminar flow at constant
wall temperature, Int. J. Heat Mass Transfer (43) (2000) 767–
775.

[12] M.S. Bhatti, R.K. Shah, Turbulent flow and transition flow convec-
tive heat transfer in ducts, in: S. Kakac�, R.K. Shah, W. Aung (Eds.),
Handbook of Single-Phase Convective Heat Transfer, John Wiley
and Sons, New York, 1987, pp. 4.24–4.43.

[13] V. Gnielinski, New equations for heat and mass transfer in turbulent
pipe and channel flow, Int. Chem. Eng. (16) (1976) 359–368.

[14] S. Aravinth, Prediction of heat and mass transfer for fully developed
turbulent fluid flow through tubes, Int. J. Heat Mass Transfer (43)
(2000) 1399–1408.


	Optimum length of tubes for heat transfer in turbulent flow at constant wall temperature
	Introduction
	Derivation of the equations
	Equations for long and short tubes
	Long tubes
	Short tubes
	Low Prandtl numbers
	High Prandtl numbers


	Results
	Conclusions
	References


